วันศุกร์ที่ 12 กุมภาพันธ์ พ.ศ. 2559

การยกกำลัง

การยกกำลัง คือการดำเนินการทางคณิตศาสตร์อย่างหนึ่ง เขียนอยู่ในรูป an ซึ่งประกอบด้วยสองจำนวนคือ ฐาน a และ เลขชี้กำลัง (หรือ กำลังn การยกกำลังมีความหมายเหมือนการคูณซ้ำ ๆ กัน คือ a คูณกันเป็นจำนวน n ตัว เมื่อ n เป็นจำนวนเต็มบวก
a^n = \underbrace{a \times \cdots \times a}_n
คล้ายกับการคูณซึ่งมีความหมายเหมือนการบวกซ้ำ ๆ กัน
a \times n = \underbrace{a + \cdots + a}_n
โดยปกติเลขชี้กำลังจะแสดงเป็นตัวยกอยู่ด้านขวาของฐาน จำนวน an อ่านว่า a ยกกำลัง n หรือเพียงแค่ a กำลัง n ในภาษาอังกฤษอาจเรียกการยกกำลังบางตัวต่างออกไปเช่น a2 จะเรียกว่า square และ a3 เรียกว่า cube เป็นต้น เมื่อตัวยกไม่สามารถใช้ได้เช่นในข้อความแอสกี ก็มีรูปแบบการเขียนอย่างอื่นที่ใช้กันอาทิ a^n และ a**n เป็นต้น
เลขยกกำลัง an อาจนิยามให้ n เป็นจำนวนเต็มลบก็ได้เมื่อค่า a ไม่เป็นศูนย์ ตามปกติไม่สามารถกระจายจำนวนจริง a กับ n ได้ทุก ๆ ค่าโดยธรรมชาติ แต่เมื่อฐาน a เป็นจำนวนจริงบวก จำนวน anสามารถนิยามเลขชี้กำลัง n ได้ทุกค่าแม้แต่จำนวนเชิงซ้อนผ่านฟังก์ชันเลขชี้กำลัง ez ฟังก์ชันตรีโกณมิติก็สามารถเขียนให้อยู่ในรูปของการยกกำลังได้
การยกกำลังที่มีเลขชี้กำลังเป็นเมทริกซ์ใช้สำหรับการหาคำตอบของระบบสมการเชิงอนุพันธ์เชิงเส้น
การยกกำลังก็ใช้งานในความรู้สาขาอื่นอย่างแพร่หลายเช่นเศรษฐศาสตร์ ชีววิทยา เคมี ฟิสิกส์ และวิทยาการคอมพิวเตอร์ ในการใช้งานคำนวณอย่างเช่นดอกเบี้ยทบต้น การเพิ่มประชากรจลนพลศาสตร์เคมี พฤติกรรมของคลื่น และการเข้ารหัสลับแบบกุญแจอสมมาตร เป็นต้น อ่านต่อ

บทที่ 2 อัตราส่วนตรีโกณมิติ

อัตราส่วนตรีโกณมิติ
คำว่า “ตรีโกณมิติ” ตรงกับคำ ภาษาอังกฤษ “Trigonometry” หมายถึง การวัด รูปสามเหลี่ยมได้มีการนำความรู้วิชาตรีโกณมิติไปใช้ในการหาระยะทาง พื้นที่ มุม และทิศทางที่ยากแก่การวัดโดยตรง เช่น การหาความสูงของภูเขา การหาความกว้างของแม่น้ำ เป็นต้น              จากรูปสามเหลี่ยมมุมฉาก ABC ที่มีมุม C เป็นมุมฉาก


เมื่อพิจารณามุม A
BC เรียกว่า ด้านตรงข้ามมุม A ยาว a หน่วย
CA เรียกว่า ด้านประชิดมุม  A ยาว b หน่วย
AB เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย

เมื่อพิจารณามุม B
AC เรียกว่า ด้านตรงข้ามมุม B ยาว b หน่วย
CB เรียกว่า ด้านประชิดมุม B ยาว a หน่วย


BA เรียกว่า ด้านตรงข้ามมุมฉาก ยาว c หน่วย  อ่านต่อ

ความน่าจะเป็น

ความน่าจะเป็น คือการวัดหรือการประมาณความเป็นไปได้ว่า บางสิ่งบางอย่างจะเกิดขึ้นหรือถ้อยแถลงหนึ่ง ๆ จะเป็นจริงมากเท่าใด ความน่าจะเป็นมีค่าตั้งแต่ 0 (โอกาส 0% หรือ จะไม่เกิดขึ้น) ไปจนถึง 1 (โอกาส 100% หรือ จะเกิดขึ้น[1] ระดับของความน่าจะเป็นที่สูงขึ้น คือความเป็นไปได้มากขึ้นที่เหตุการณ์นั้นจะเกิด หรือถ้ามองจากเงื่อนเวลาของการสุ่มตัวอย่าง คือจำนวนครั้งมากขึ้นที่เหตุการณ์เช่นนั้นคาดหวังว่าจะเกิด
มโนทัศน์เหล่านี้มาจากการแปลงคณิตศาสตร์เชิงสัจพจน์ในทฤษฎีความน่าจะเป็น ซึ่งใช้กันอย่างแพร่หลายในขอบเขตการศึกษาต่าง ๆ เช่น คณิตศาสตร์ สถิติศาสตร์ การเงิน การพนันวิทยาศาสตร์ ปัญญาประดิษฐ์/การเรียนรู้ของเครื่อง และปรัชญา เพื่อร่างข้อสรุปเกี่ยวกับความถี่ที่คาดหวังของเหตุการณ์ต่าง ๆ เป็นอาทิ ทฤษฎีความน่าจะเป็นก็ยังนำมาใช้เพื่ออธิบายกลไกรากฐานและความสม่ำเสมอของระบบซับซ้อน อ่านต่อ